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Abstract

A strategy is developed to use database-derived φ-ψ constraints during simulated annealing procedures for pro-
tein solution structure determination in order to improve the Ramachandran plot statistics, while maintaining the
agreement with the experimental constraints as the sole criterion for the selection of the family. The procedure,
fully automated, consists of two consecutive simulated annealing runs. In the first run, the database-derived φ-ψ
constraints are enforced for all aminoacids (but prolines and glycines). A family of structures is then selected on
the ground of the lowest violations of the experimental constraints only, and the φ-ψ values for each residue are
examined. In the second and final run, the database-derived φ-ψ constraints are enforced only for those residues
which in the first run have ended in one and the same favored φ-ψ region. For residues which are either spread
over different favored regions or concentrated in disallowed regions, the constraints are not enforced. The final
family is then selected, after the second run, again only based on the agreement with the experimental constraints.
This automated approach was implemented in DYANA and was tested on as many as 12 proteins, including some
containing paramagnetic metals, whose structures had been previously solved in our laboratory. The quality of the
structures, and of Ramachandran plot statistics in particular, was notably improved while preserving the agreement
with the experimental constraints.

Introduction

The knowledge of the backbone dihedral angles φ and
ψ is a major issue in protein solution structure deter-
mination by NMR, as they are especially important
in order to define the secondary structure (Figure 1).
Given a new protein whose structure is unknown and
not deducible by homology with other similar pro-
teins, these angles are of course not known a priori.
However, on statistical grounds, φ and ψ show a
very well defined tendency to cluster within preferred
ranges of the so-called φ-ψ, or Ramachandran, plot.
This tendency, noted and rationalized long ago (Ra-
machandran et al., 1963), is confirmed day by day by
the availability of a continuously increasing number
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of high resolution/atomic resolution crystal structures.
Statistically, newly determined protein structures by
X-ray show more than 95% (Kleywegt and Jones,
2002) of their φ-ψ pairs within the expected regions,
and the remaining pairs not far from them. Exceptions
do occur, but they are always related to peculiar struc-
tural features. On the other hand, protein structures
solved by NMR show a significantly lower percentage
of φ-ψ pairs in the expected regions, and strong out-
liers are much more common than in protein structures
solved by X-ray (Spronk et al., 2002). It is now widely
accepted that this different behavior of solution struc-
tures – in most cases – does not imply any intrinsic
difference with respect to the solid state structures,
but rather originates from less accurate, or lack of,
experimental information on the φ-ψ angle values.
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Figure 1. Scheme of the dihedral angles φ and ψ. φ is defined as the C-N-Cα-C angle, whereas ψ is defined as the N-Cα-C-N angle. The atoms
bound to Cα (Hα and side-chain) are not shown for clarity.

Figure 2. Ramachandran type plot derived from the PROCHECK processed database of high-resolution X-ray structures. The 360◦ × 360◦
conformational space of φ, ψ was divided in 1296 10◦ × 10◦< pixels. Pixels are labeled according to the region they belong to (C = Core, A =
Allowed, G = Generous).
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The agreement between the observed and expected
distributions of φ and ψ is indeed a well-established,
significant check of the validity of experimentally
determined protein structures. More generally, a so-
called stereochemical quality of a protein, which
involves checks on the geometrical properties (e.g.,
bond lengths, bond angles, dihedral angles, etc.), is
defined and used to assess the quality of a structure
(Markley et al., 1998; Doreleijers et al., 1998). The
evaluation of the stereochemical quality is based on
comparisons with what is known about standard pro-
tein structure and geometry from the wealth of high-
resolution X-ray structures already deposited in the
PDB. A widely used suite of computer programs per-
forming a large number of validation checks on a given
NMR ensemble of protein structures is PROCHECK-
NMR (Laskowski et al., 1996), which is an extension
of the PROCHECK programs (Laskowski et al., 1993)
used for assessing the stereochemical quality of X-
ray structures. Using a database of 163 high-resolution
non-homologous X-ray structures, these programs can
assess how ‘normal’ or ‘abnormal’ a given model
is, compared with the standard values (Morris et al.,
1992; MacArthur et al., 1994). In particular, they ex-
amine the dihedral angles φ and ψ in a protein to
find any angles in the model that are uncommon, and
therefore suspect.

With these premises, it would seem natural to
include database-derived φ-ψ constraints in solution
structure determinations. This has been suggested sev-
eral times, and φ-ψ statistical constraints (as well as
other dihedral angle constraints) are an option already
available (Kuszewski et al., 1996) in XPLOR-NIH, the
current freely available version of XPLOR (Clore and
Gronenborn, 1998; Schwieters et al., 2003). However,
the use of constraints based on database statistics, and
in general on previous knowledge, is not universally
accepted. The argument is that, while in the majority
of cases these constraints will improve the accuracy
of the structure, in the few but a priori unpredictable
cases of true deviations from the favored φ-ψ regions,
the structure will be forced to adopt a wrong local
conformation if the experimental NMR constraints
are not enough, and the accuracy will be lowered.
A similar argument holds for energy terms based
on empirical inter-atomic potentials (Sprangers et al.,
2000). Another popular program, DYANA (Güntert
et al., 1997) and the more recent CYANA (Herrmann
et al., 2002), purposely avoid the use of empirical or
database-derived potentials for this reason.

Here we suggest a strategy to use database-derived
φ-ψ constraints simply as ‘filters’ during the simulated
annealing procedure, to favor those structures that,
by still fulfilling the experimental constraints, are in
better agreement with φ-ψ statistics. In the end, the
best structures are selected only on the ground of the
agreement with the experimental constraints and not
with the database-derived constraints. The procedure,
fully automated, was implemented in DYANA and was
tested on as many as 12 proteins whose structures had
been previously solved in our laboratory. The quality
of the structures, and of Ramachandran plot statistics
in particular, was notably improved. Importantly, these
improvements were not achieved at the expenses of the
agreement with the experimental constraints.

Materials and methods

The conformational database potential was derived
from the PROCHECK processed database of high-
resolution X-ray structures (Morris et al., 1992;
Laskowski et al., 1993). In that processing, the dis-
tribution of φ, ψ angles in the protein structures was
analyzed, starting from the well-known observation
by Ramachandran et al. (Ramachandran et al., 1963)
that φ, ψ space for a dipeptide is very restricted for
all residues except glycine, due to steric clashes. The
360◦ × 360◦ conformational space of φ, ψ was di-
vided in 1296 10◦ × 10◦ pixels, and the number of
residues in each pixel was calculated. Proline and
glycine residues were excluded from the study due
to their atypical distributions (Morris et al., 1992;
Kuszewski et al., 1996). On the basis of the obtained
population density, three sets of allowed φ, ψ an-
gles were defined: (i) The CORE region, including
all pixels with more than 100 residues, (ii) the AL-
LOWED region, including all pixels with eight or
more residues per pixel, and (iii) the GENEROUS
region, defined by extending out by 20◦ (two pixels)
all round the ALLOWED area. The space left after
these regions had been defined was designated OUT-
SIDE. The Ramachandran type plot derived by this
procedure, showing the individual pixel assignments,
is shown in Figure 2. This plot was straightforwardly
transformed into a 36 × 36 matrix of energy values at
evenly spaced points along the φ, ψ axes, by arbitrar-
ily assigning the following values of target function to
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the four different sets:

TFCORE = 0 Å
2

TFALLOWED = 1 Å
2

TFGENEROUS = 4 Å
2

TFOUTSIDE = 9 Å
2

Other values could have been used as well: This
choice was intended to follow the quadratic form
of the potential terms used for the other constraints
(Güntert et al., 1997).

The contribution of the new potential term
(TFrama) to the global DYANA target function can be
thus expressed as:

TFrama = W�iwi(TFset)i, (1)

where the sum is over all the residues on which the
constraint is applied, and TFset is equal to one of the
four above defined values of target function, depend-
ing on the grid pixel of φ, ψ space that encompasses
the i-th pair of φ, ψ angles. W and wi are global
and relative weighting factors, respectively; the for-
mer is used to rescale TFrama with respect to the other
constraints.

For the integration of the equations of motion in
DYANA, explicit expressions for the torques about
the rotatable bonds are required. In the module RA-
MADYANA developed in the present work, the gradi-
ents of the new potential energy term with respect to
the torsion angles φ and ψ are approximated by the
local slope of the target function, defined by:

∂TFrama(θk)/∂θ = Wwi[TFrama(θk+1) −
TFrama(θk−1)]/2d, (2)

where ∂TFrama(θk)/∂θ is the partial derivative of the
target function of pixel k with respect to the rotatable
bond θ (i.e. φ or ψ), TFrama(θk+1) and TFrama(θk−1)

are the target function values of the pixels that precede
and follow the pixel k along the θ dimension in the
grid, and d is the width of a pixel (i.e., 10◦).

It is worth to notice that the gradients (2) can be
calculated once for all from the target function matrix,
yielding two other matrices whose elements are the
partial derivatives of TFrama with respect to φ and ψ,
respectively. Because the gradients (2) do not need to
be evaluated at every step of dynamics, the additional
computational burden required by the new potential
term is thus considerably lightened.

Results

The module RAMADYANA was tested on 12 pro-
teins, which are listed in Table 1. These proteins cover
a wide range of folding types (see Table 1), varying
from the EF-hand motif of Calbindin D9k (12 in Ta-
ble 1) to the β-barrel of Cu-free SOD (4 in Table 1),
and comprise diamagnetic metalloproteins (2, 4, 6 and
8 in Table 1), as well as paramagnetic metalloproteins
(1, 3, 10 and 12 in Table 1).

Successive structure calculations by DYANA were
performed on each protein, using the available ex-
perimental constraints (Assfalg et al., 1999, 2002;
Bartalesi et al., 2002; Banci et al., 1994, 2001, 2002;
Arnesano et al., 2001, 2002; Bertini et al., 2001).
These constraints are summarized in Table 2. In all
the calculations, 200 conformers with initial random
values of the torsion angles were subjected to 12000
steps of the simulated annealing procedure, and the 20
structures with the lowest values of the target function
were sorted out. In no case, the contribution of TFrama

was taken into account to select the models of the final
ensemble: the rationale for this choice is described in
the Discussion.

In the reference calculation, the new potential
term, TFrama, was excluded from the global DYANA
target function, by setting the weighting factor of this
term (W in Equation 1) to zero. Statistics on the re-
sulting ensembles of structures are collected in Table 3
under the heading NO.

In the first calculation with the RAMADYANA
module, the new potential term, TFrama, was included
in the global target function, setting the weighting
factor W to 1. The new constraint was applied to all
the residues of the protein chain, except for proline
and glycine residues. The distribution of the values
of φ and ψ over the selected ensemble of 20 models
was then analyzed on a residue-by-residue basis, in
order to evaluate whether the application of the new
constraint on every single residue was allowed. In par-
ticular, the residues were selected for the second run
according to their value of circular variance (Allen
and Johnson, 1991; MacArthur and Thornton, 1993),
which quantifies the degree of spread of φ and ψ val-
ues across the structures of the ensemble. The circular
variance for a given dihedral angle θ is defined as:

Var(θ) = 1 − R/n, (3)

the parameter R being given by the expression:

R2 = (�i=1,n cos θi)
2 + (�i=1,n sin θi)

2, (4)
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Table 1. Proteins used for test calculations

Protein Source Residues PDB code Fold

1 Fully oxidized K9-10A cyt c7 Desulforomonas 68 1L30a βαββαβ

acetoxidans 1KWJb

2 Reduced iso-1-cytc Saccharomyces 108 1YFC All-α

cerevisiae

3 Oxidized cytc Shewanella 81 1KX7a All-α

putrefaciens 1KX2b

4 Monomeric Cu-free SOD Homo sapiens 153 1KMG All-β

5 Apo-CopA (N-terminal domain) Bacillus subtilis 80 1JWW βαββαβ

6 Cu(I)-CopA (N-terminal domain) Bacillus subtilis 80 1KQK βαββαβ

7 Apo-Atx1 Saccharomyces 73 1FES βαββαβ

cerevisiae

8 Cu(I)-Atx1 Saccharomyces 73 1FD8 βαββαβ

cerevisiae

9 Apo-Ccc2A domain Saccharomyces 72 1FVQ βαββαβ

cerevisiae

10 Oxidized HiPIP I Ectothiorhodospira 73 1PIHa All-β

halophila 1PIJb

11 Apo-CopC Pseudomonas 102 1M42 All-β

syringae

12 Ca(II)-Ce(III) Calbindin D9k Bos Taurus 79 1KQVa All-α

1KSMb

aEnsemble of structures.
bMinimized mean structure.

Table 2. Type and number of constraints used in DYANA calculations

Protein NOE Dihedral angles RDC RAMADYANA Residues with Var Residues consistently Threshold

constraints constraints constraints constraints larger than the falling in disallowed value of Var

threshold value regions

1 1186 – – 55 2 1 0.11

2 1473 – – 56 34 – 0.12

3 1310 70 – 64 5 – 0.13

4 2467 165 – 95 27 – 0.11

5 1278 95 – 61 10 – 0.11

6 1415 87 – 59 12 – 0.05

7 1176 – – 56 9 – 0.18

8 1148 42 60 59 6 – 0.17

9 1970 35 – 61 6 – 0.13

10 1125 – – 57 3 – 0.15

11 1437 149 – 71 10 1 0.18

12 1715 – – 64 5 – 0.13
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Table 3. Selected parameters describing the structures obtained with all the available NOE, dihedral angles and
RDC constraints, without (NO) or with (YES) RAMA constraints

Protein RAMA RMSD backbone Target function Ramachandran

constraints (Å) excluding RAMA constraints Core All. Gen. Dis.

(%) (%) (%) (%)

1
NO 1.11 ± 0.29 0.57 ± 0.02 47.5 43.5 5.9 3.0

YES 1.05 ± 0.17 0.41 ± 0.06 63.4 33.4 1.6 1.6

2
NO 1.01 ± 0.12 0.44 ± 0.07 55.1 37.3 6.6 1.0

YES 0.95 ± 0.15 0.37 ± 0.07 67.5 29.1 3.1 0.4

3
NO 0.78 ± 0.15 0.63 ± 0.06 63.5 28.9 5.3 2.3

YES 0.67 ± 0.11 0.65 ± 0.09 70.4 26.4 2.9 0.4

4
NO 1.20 ± 0.16 1.66 ± 0.18 54.5 39.5 5.1 1.0

YES 1.00 ± 0.15 1.92 ± 0.36 70.6 25.0 2.9 1.5

5
NO 1.65 ± 0.25 0.69 ± 0.11 51.3 42.8 4.9 1.0

YES 1.62 ± 0.52 0.73 ± 0.11 70.5 24.7 3.4 1.4

6
NO 0.70 ± 0.14 0.47 ± 0.04 73.2 20.7 5.6 0.5

YES 0.77 ± 0.14 0.63 ± 0.07 77.6 17.8 3.7 0.9

7
NO 0.94 ± 0.19 0.54 ± 0.15 60.3 34.9 2.6 2.2

YES 1.01 ± 0.23 0.52 ± 0.13 70.6 25.0 2.9 1.5

8
NO 0.56 ± 0.09 0.79 ± 0.08 71.2 25.8 2.5 0.5

YES 0.57 ± 0.12 0.76 ± 0.11 77.0 20.6 1.8 0.6

9
NO 0.56 ± 0.09 0.59 ± 0.06 67.5 27.9 4.0 0.6

YES 0.57 ± 0.08 0.65 ± 0.09 80.2 19.3 0.4 0.0

10
NO 0.65 ± 0.09 0.45 ± 0.60 56.1 39.5 2.7 1.8

YES 0.66 ± 0.11 0.39 ± 0.11 75.9 23.4 0.5 0.2

11
NO 1.36 ± 0.32 0.37 ± 0.09 69.3 23.4 5.6 1.7

YES 1.33 ± 0.35 0.30 ± 0.12 75.8 17.6 4.7 2.0

12
NO 0.94 ± 0.21 0.09 ± 0.01 72.8 23.8 3.1 0.2

YES 0.95 ± 0.15 0.17 ± 0.02 94.8 4.2 0.9 0.0

where n is the number of members in the ensem-
ble. The value of the circular variance varies from 0
to 1, with the lower the value the tighter the clus-
tering of the values about a single mean value. An
averaged, residue-specific circular variance is thus
straightforwardly defined as:

Var(residue) = [Var(φ) + Var(ψ)]/2 (5)

with Var(residue) likewise ranging from 0 to 1.
Residues with a value of circular variance Var(residue)
larger than a given threshold value were considered
unsuitable for the application of the new constraint
(see Discussion). Moreover, residues with a small
value of Var(residue), but located in unfavorable re-
gions of the Ramachandran plot, were excluded as
well (see Discussion). The above mentioned threshold
value can be assigned by default (e.g., 0.15), or its
choice can be prompted by the program through vi-
sual inspection of the Ramachandran plots per residue,
which are provided as an output by PROCHECK-

NMR (Laskowski et al., 1996), and comparison with
the corresponding values of Var(residue).

In the second calculation, the new potential term,
TFrama, was again included in the global target func-
tion, setting the weighting factor W to 1. However,
the new constraint was applied only to the residues se-
lected on the basis of the analysis described above, i.e.
residues with a value of circular variance Var(residue)
larger than the threshold value, as well residues with
small circular variance consistently falling in the dis-
allowed regions, were excluded by setting their rel-
ative weighting factors (wi in Equation 1) to zero.
The number of constraints and the threshold value
of Var(residue) used for each protein, as well as the
number of residues excluded on the basis of these
criteria, are shown in Table 2. The structures com-
posing the final family were again sorted only on
the basis of the target function for the experimental
constraints. Selected parameters of the resulting en-
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sembles of structures are collected in Table 3 under the
heading YES, for comparison with structures obtained
without (heading NO) the RAMADYANA strategy.

The value of the target function, calculated with the
exclusion of the TFrama contribution, slightly increases
in 6 cases (proteins 3, 4, 5, 6, 9 and 12), whereas it de-
creases in the other 6 cases (proteins 1, 2, 7, 8, 10 and
11). This shows that the agreement with the available
NMR constraints is not compromised by the use of the
RAMADYANA strategy during the simulated anneal-
ing. The average value of backbone RMSD decreases
in 6 cases (proteins 1, 2, 3, 4, 5 and 11), whereas it is
essentially unchanged in 4 cases (proteins 8, 9, 10 and
12) and slightly increases in the other 2 cases (proteins
6 and 7).

On the other hand, the improvement in the Ra-
machandran plot statistics is notable, yet not trivial
(see Discussion), with an average increase of 12.7% of
residues in the CORE region (from 61.8% to 74.5%),
and an average decrease of 2.5% of residues in the
DISALLOWED + GENEROUS regions (from 5.8%
to 3.3%).

When available (Louie and Brayer, 1990; Breiter
et al., 1991; Svensson et al., 1992; Rosenzweig et al.,
1999; Czjzek et al., 2001), X-ray structures were com-
pared to the solution structures obtained with (YES) or
without (NO) the RAMADYANA strategy, evaluating
both the backbone RMSD and the correlation between
the values of φ and ψ (see Table 4): the improved
agreement with the crystal structures in the former
case provides a further proof of the enhancement in
the accuracy of NMR structures due to the use of this
strategy. A representative plot of the calculated φ-ψ
values versus the corresponding ones measured in the
X-ray structure is shown in Figure 3 for protein 2.

It is worth to notice that only one Ramachan-
dran plot outlier was found among the available X-ray
structures, i.e., the residue Glu39 of protein 10. Con-
versely, in the NMR structure it falls very well within
the Ramachandran B region, both without and with the
RAMADYANA strategy. This particular disagreement
is thus not an artifact generated by the new constraint.
Indeed, this outlier in the X-ray structure is present in
only one of the two molecules per asymmetric unit,
and has been interpreted as due to crystal packing
forces (Breiter et al., 1991).

Discussion

As discussed in the Introduction, a possible drawback
in the use of empirical information for defining the
backbone conformation of a protein is that it can bias
the calculated structure towards the structures present
in the databases from which the conformational po-
tential was derived. Errors can be introduced into the
protein model in two cases: (i) The structure actually
has unusual features which bring to outliers in the
Ramachandran plot (Kleywegt and Jones, 1996); (ii)
some regions of the backbone are poorly defined due
to the lack or scarcity of experimental data. In case
(i), residues that truly exhibit φ, ψ angles located in
unfavorable regions of the Ramachandran plot will be
spotted by specific discrepancies between the model
and the experimental constraints. Such violations will
therefore be accounted for by special structural fea-
tures of the protein, provided that there is extensive
experimental evidence to account for those unusual φ,
ψ values (Kleywegt and Jones, 1996). In case (ii), the
values of φ and ψ for residues lacking experimental
information will be mainly determined by the confor-
mational potential, an eventuality which we want to
avoid. Since we defined this potential as having three
equivalent minima corresponding to the three CORE
regions (see Methods and Figure 2), the values of φ

and ψ across an ensemble of calculated structures for
residues poorly defined by experimental data will have
a tendency to cluster in the three minima. Such an
unwanted distribution is hinted at by a relatively large
value of the circular variance (see Equation 5), with
respect to residues showing values of φ and ψ clus-
tered by the experimental constraints about a single
mean value. Thus, the conformational potential can
cause errors in the calculated protein models either
by conflicting with the experimental constraints (case
i), or by replacing them in determining the result-
ing structures (case ii). The strategy that we suggest
here eliminates these possible errors, endowing the
constraints derived from the experimental data with
absolute prevalence with respect to the constraints
derived from structure databases. This is achieved
through the execution of a preliminary structure cal-
culation aimed at selecting the residues on which the
conformational potential can be safely applied. In that
calculation, the new constraint is applied to all the
residues, and the distribution of the values of φ and ψ

over the resulting ensemble of structures is analyzed.
In order to eliminate errors due to lack of experimental
data (case ii), the residues with a value of circular vari-
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Table 4. Comparison between the available X-ray structures and the average NMR struc-
tures obtained with all the available experimental constraints, without (NO) or with (YES)
RAMA constraints. The RMSD for backbone atoms was evaluated, as well as the squared
correlation coefficient (R2) between the calculated values of φ and ψ and the corresponding
ones measured in the X-ray structure

Protein PDB code of RAMA φ and ψ Backbone RMSD

X-ray structure constraints correlation (R2 value) (Å)

1 1HH5
NO 0.83 1.30

YES 0.90 1.22

2 1YCC
NO 0.92 0.88

YES 0.96 0.86

8 1CC8
NO 0.96 1.13

YES 0.97 1.11

10 2HIP
NO 0.91 0.89

YES 0.92 0.89

12 4ICBa NO 0.82 1.43

YES 0.88 1.34

aCa(II)-Ca(II) Calbindin D9k.

Figure 3. Plot of φ and ψ values calculated for protein 2 with (crosses) and without (squares) RAMA constraints versus the corresponding φ

and ψ values measured in the X-ray structure. The squared correlation coefficient R2 is 0.92 for the calculation without RAMA constraints and
0.96 for the calculation with RAMA constraints.
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Figure 4. Contributions to the target function value of the structures calculated for protein 12 without and with RAMA constraints. The
contribution of the experimental constraints is shown as circles (calculation without RAMA constraints) or triangles (calculation with RAMA
constraints), whereas the contribution of RAMA constraints is shown as crosses (calculation without RAMA constraints) or squares (calcu-
lation with RAMA constraints). In (A) and (B) all the 200 calculated structures are shown, sorted in order of increasing contribution of the
experimental constraints to the target function. In (C) and (D) the 40 structures with the lowest violations of RAMA constraints resulting from
the calculation without RAMA constraints are selected and compared to the 40 structures with the lowest violations of experimental constraints
resulting from the calculation with RAMA constraints.

ance Var(residue) larger than a given threshold value
are considered potentially dangerous, and the new
constraint is not applied on them in the successive cal-
culation. Furthermore, in order to eliminate errors due
to conflict between the experimental data and the con-
formational potential (case i), also the residues with a
value of Var(residue) under the threshold, yet located
in unfavorable regions of the Ramachandran plot, are

considered unsuitable for the application of the new
constraint in the successive calculation.

A key feature of the RAMADYANA strategy is
that the structures are sorted out on the basis of the
value of the target function with the exclusion of the
Ramachandran constraints contribution. This allows
us to use a relatively large weighting factor W = 1 (see
Equation 1) for the Ramachandran constraints contri-
bution, in such a way that the contribution of TFrama
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Figure 5. Contributions to the target function value of the structures calculated for protein 2 without and with RAMA constraints. The
contribution of the experimental constraints is shown as circles (calculation without RAMA constraints) or triangles (calculation with RAMA
constraints), whereas the contribution of RAMA constraints is shown as crosses (calculation without RAMA constraints) or squares (calcu-
lation with RAMA constraints). In (A) and (B) all the 200 calculated structures are shown, sorted in order of increasing contribution of the
experimental constraints to the target function. In (C) and (D) the 40 structures with the lowest violations of RAMA constraints resulting from
the calculation without RAMA constraints are selected and compared to the 40 structures with the lowest violations of experimental constraints
resulting from the calculation with RAMA constraints.

to the global target function is of the order of few tens
of Å2, thus largely predominant with respect to the
other contributions. The final ensemble of structures
however comprises the models which fulfill best the
experimental constraints only, although the TFrama

contribution was actually taken into account for their
determination.

The consequences of this strategy are illustrated
in Figures 4 and 5 for proteins 12 and 2, respec-
tively. The Figures illustrate the contributions to the
target function due to the experimental and the RAMA
constraints for the structures calculated both with and
without RAMA constraints. It appears that the addi-
tion of RAMA constraints causes a modest increase
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of the experimental contribution for protein 12 (Fig-
ure 4B), and even its decrease in the best 40 structures
of protein 2 (Figure 5B). At the same time, the target
function for the Ramachandran violations decreases,
on average, from 25 to 5 Å2 for protein 12 (Figure 4A)
and from 40 to 15 Å2 for protein 2 (Figure 5A).
It can be noted that it would have been impossi-
ble to use such a high weight for the Ramachandran
constraints from the very beginning of the simulated
annealing procedure if their contribution to the target
function were to be kept into account for sorting the
structures. In that case the Ramachandran constraints
would have had an overwhelming role. Moreover, a fil-
tering process done a posteriori, i.e., a selection of the
structures on the ground of the lowest Ramachandran
violations done after performing a simulated anneal-
ing without Ramachandran constraints would not have
been as effective as the present strategy (see Figures
4C and 4D for protein 12 and Figures 5C and 5D for
protein 2).

The significant improvement in the Ramachandran
plot statistics achieved through the use of the confor-
mational potential described in this work (see Results
and Table 3) is not deceptive, because the agreement
with the experimental constraints was not compro-
mised in any of the calculations: in fact, it even
improved in 6 cases (proteins 1, 2, 7, 8, 10 and 11),
whereas only a minimal impairment was observed in
the other cases. Moreover, even when the impairment
is relatively large (proteins 4, 6 and 12), it can be
observed (data not shown) that this is not due to the
generation of consistent violations in the structures
obtained with the RAMADYANA strategy; rather, the
value of the target function increases because of the
rise of small NOE violations (under 0.05 Å) spread all
over the chain, which are not meaningful for the qual-
ity of the structures. In any case, it should be kept in
mind that in no case the experimental constraints were
re-calibrated with respect to the original calibration.
Re-calibration, which is possible within the present
program, would probably have brought further slight
improvements in the structures.

For these reasons, also the decrease in the average
value of backbone RMSD observed in 6 cases (pro-
teins 1, 2, 3, 4, 5 and 11) should be seen as a real
improvement in the precision of the structure ensem-
bles. The RMSD is instead unchanged for proteins 8,
9, 10 and 12 and slightly increases for proteins 6 and 7.
In any case, the increase in precision, where present,
should be taken as an additional bonus and not as the

goal of this strategy, which is to increase the accuracy
of the obtained structures.

Finally, a comment is due on the form chosen
for the conformational potential. The potential de-
fined in the present procedure is flat within each type
of region, i.e., a force is active only along region
boundaries, but not in the interior of forbidden re-
gions. A variety of methods could be used to smooth
that function, in order to reduce the number of pix-
els for which both the local slopes with respect to φ

and ψ are null. However, test calculations with poten-
tials acting over the whole φ, ψ conformational space
showed a worsening in the convergence properties of
the calculation (data not shown). This was somehow
expected, because the original potential fits at best the
RAMADYANA strategy, whose innocence is based on
using the database-derived constraints simply as filters
during the simulated annealing procedure.

Conclusions

The present strategy to use the information from data-
bases of high-resolution protein crystal structures can
provide a useful addition to improve the accuracy of
NMR structures. In particular, we defined a confor-
mational potential term based on the relative pop-
ulations of various combinations of φ, ψ dihedral
angles observed in databases, and we implemented it
in the DYANA program through the new module RA-
MADYANA. The new potential term is aimed at im-
proving the definition of the backbone conformation
of a protein through the introduction of a constraint
directly acting on φ and ψ angles, without influencing
the sorting of the resulting structures. The possibility
that the use of empirical information bias the confor-
mation of the protein towards the structures existing
in the databases was addressed through the definition
of a protocol which (i) gives absolute relevance to
the available experimental constraints with respect to
the conformational constraints, and (ii) automatically
eliminates the constraints when they spread the φ-ψ
values over more than one allowed region or when the
φ-ψ values concentrate in a disallowed region due to
experimental constraints. With this approach, which
was tested on as many as 12 proteins, the quality
of the structures, and of Ramachandan plot statistics
in particular, was notably increased. The improved
agreement with the available crystal structures con-
firms the validity of the strategy. Importantly, these
improvements were not achieved at the expenses of the
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agreement with the experimental constraints, which
was not compromised in any way.
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